Glass Formation in the Li₂O-TiO₂-P₂O₅, MgO-TiO₂-P₂O₅, and CaO-TiO₂-P₂O₅ Systems

Akira Kishioka

Department of Chemistry, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda-ku, Tokyo 102 (Received December 20, 1977)

The glass-forming regions in the $\text{Li}_2\text{O}-\text{TiO}_2\text{-P}_2\text{O}_5$, $\text{MgO}-\text{TiO}_2\text{-P}_2\text{O}_5$, and $\text{CaO}-\text{TiO}_2\text{-P}_2\text{O}_5$ systems have been determined. Homogeneous glasses were formed with compositions of less than 50 mol% P_2O_5 in all three systems. The largest quantities of TiO_2 could be introduced into glass for compositions of 30 mol% P_2O_5 . In compositions with more than 50 mol% P_2O_5 only a mixture of the glass and crystal was formed. With an increase in the TiO_2 content, the density of the glass increased and the volume per mole of oxygen decreased. These results indicate that the TiO_2 had been easily incorporated into the glass with compositions of lower P_2O_5 contents, contributing to the stabilization of the glass structure.

The role of intermediate ions such as Ti⁴⁺ and Al³⁺ in glass formation in ternary phosphate systems is interesting, since it reflects the glass structure. Reports concerning the glass-forming regions in ternary phosphate systems, however, are relatively few compared with those in ternary systems containing other glass-forming oxides. Recently, glass formation in the BeO-TiO₂-P₂O₅, CaO-TiO₂-P₂O₅, and K₂O-TiO₂-P₂O₅ systems and the electrical resistivity have been reported by Hayashi *et al.*¹⁾ The present authors have reported glass formation in the Na₂O-BaO-TiO₂-P₂O₅ four-component system,²⁾ the ternary phosphate systems containing Al₂O₃,³⁾ and the role of the Al³⁺ ion in alkali aluminophosphate glasses.⁴⁾

In this paper, glass-forming regions for the Li₂O-TiO₂-P₂O₅, MgO-TiO₂-P₂O₅, and CaO-TiO₂-P₂O₅ systems have been determined. The density of the glass has been determined and the volume per mole of oxygen calculated. On the basis of these results, the role of the titanium ion in the glass has been discussed.

Experimental

Determination of Glass-Forming Region. The materials used were reagent grade chemicals of titanium dioxide, orthophosphoric acid (85%), lithium hydroxide monohydrate, magnesium oxide, calcium hydrogenphosphate dihydrate, and calcium carbonate. A batch (15-g) obtained by mixing appropriate amounts of the above chemicals was placed in platinum dishes and heated in an electric furnace. After dehydration, the batch was kept at 1350 °C for 1 h. The melt was poured out and quenched by pressing with a copper plate cooled with water. The homogeneity of the glass was checked with a polarizing microscope and the naked eye.

Density of Glass. The density of the glass was determined pycnometrically using 1-butanol at 25.0 °C. For samples containing a small amount of crystal, only the glassy part was used for measurement.

Volume of Glass. The volume of the glass per mole of oxygen was calculated by the following equation:⁵⁾

$$V_0 = (G.F.W./D) \times 1/N_0,$$

where V_0 is the volume of the glass per mole of oxygen, G.F.W. is the gramme formula weight of the glass based on the batch composition, D is the density of the glass, and N_0 is the number of gramme molecular weights of oxygen (32 g units) in the glass.

Results and Discussion

Glass-Forming Tendency. The results are given The compositions whose batches melted in Figs. 1—3. completely at 1350 °C have been surrounded by dotted lines in the Figs. Homogeneous glasses were formed in compositions with less than 50 mol% P2O5. As shown by the arrows in Figs. 1—3, the content of TiO, in the glass was largest for compositions with 30 mol % P₂O₅ of each system; it was the largest for the MgO-TiO₂-P₂O₅ system. Considering that the phosphate species in the $47.5 \text{Na}_2 \text{O} \cdot 20 \text{Al}_2 \text{O}_3 \cdot 32.5 \text{P}_2 \text{O}_5$ glass were exclusively PO₄3--type ions,4) those in the glasses with 30 mol% P₂O₅ containing more than 20 mol% TiO₂ are presumably also only PO₄3- ions. Therefore, the above results indicate that the TiO2 is incorporated easily into the glass with compositions of lower P2O5 content and the formation of the glass with higher TiO₂ contents is most favorable when there are no P-O-P chains.

All glasses were colored by the titanium ion of lower valency and the MgO-TiO₂-P₂O₅ glasses with higher TiO₂ content were brownish black. The Li₂O-TiO₂-

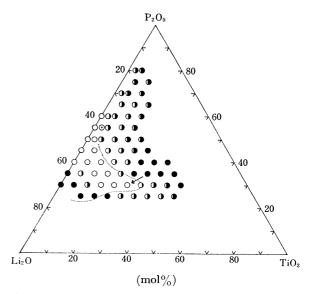


Fig. 1. Glass-forming region in Li₂O-TiO₂-P₂O₅ system. ○: Homogeneous glass, ⊙: trace amounts of crystal in glass, ⊙: glass and crystal, ⊙: crystal.

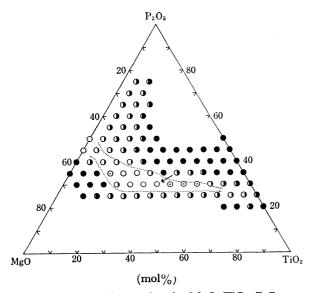


Fig. 2. Glass-forming region in MgO-TiO₂-P₂O₅ system.

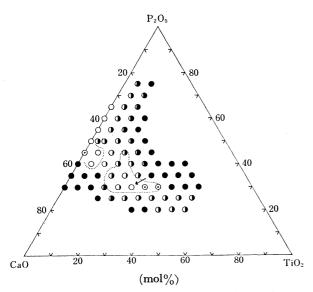


Fig. 3. Glass-forming region in CaO-TiO₂-P₂O₅ system.

P₂O₅ glasses were less colored than those containing MgO or CaO of the same molar composition.

In addition to the homogeneous glass, the following two types of products were formed; (a) a mixture of glass and crystal (produced by partial devitrification of the melt during quenching or separation of crystalline substance in the melt) and (b) a crystalline product formed as a result of devitrification during quenching or non-melting of the batch.

The glass-forming region in each system in the present work was smaller than those reported by Hayashi *et al.*¹⁾ However, the observed tendency of glass formation in compositions with less than $50 \text{ mol} \% P_2O_5$ agrees well with the results reported.¹⁾

In compositions with more than $50 \text{ mol} \% P_2O_5$, only the mixture of the glass and the crystal was formed as the result of the separation of the crystalline substance in the melt. This makes a marked difference from

the alkali (or alkaline earth) aluminophosphate system³⁾ where the homogeneous glasses were formed in the region with more than $50 \text{ mol} \% P_2O_5$ in a three-component diagram. It can be considered that the action of the titanium ion in the glass formation is fairly different from that of the Al³+ ion in the same P_2O_5 content.

Density and Volume of Glass. The density and the volume per mole of oxygen of the glasses are given in Figs. 4—7. In Figs. 4 (a) and (b), the density and the volume in the Li₂O-TiO₂-P₂O₅ glasses with the same Li₂O contents are plotted vs. the TiO₂ content respectively. The plots of the density and the volume vs. the TiO₂ content in the glasses with the same P₂O₅ contents are given in Figs. 5—7. Except for Fig. 4 (b), these plots showed linear relationships. The density of the glass increased and the volume of the glass per mole of oxygen decreased with an increase in the TiO₂ content in all the systems. This indicates the

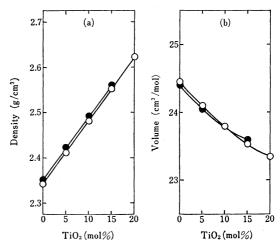


Fig. 4. Plots of (a) density vs. TiO₂ content, and (b) volume per mole of oxygen vs. TiO₂ content in the Li₂O-TiO₂-P₂O₅ glass with the same Li₂O contents. ○: 50 mol% Li₂O, ●: 55 mol% Li₂O.

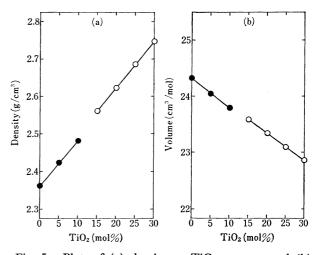


Fig. 5. Plots of (a) density vs. TiO₂ content, and (b) volume per mole of oxygen vs. TiO₂ content in the Li₂O-TiO₂-P₂O₅ glass with the same P₂O₅ contents.
○: 30 mol% P₂O₅, ●: 40 mol% P₂O₅.

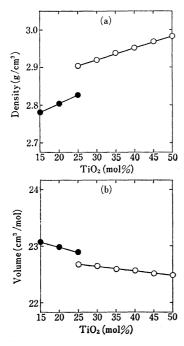


Fig. 6. Plots of (a) density vs. TiO₂ content, and (b) volume per mole of oxygen vs. TiO₂ content in the MgO-TiO₂-P₂O₅ glass with the same P₂O₅ contents.
○: 30 mol% P₂O₅, ●: 35 mol% P₂O₅.

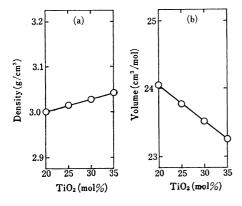


Fig. 7. Plot of (a) density vs. TiO₂ content, and (b) volume per mole of oxygen vs. TiO₂ content in the CaO-TiO₂-P₂O₅ glass with 30 mol% P₂O₅.

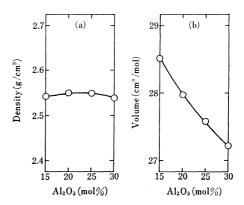


Fig. 8. Plot of (a) density vs. Al₂O₃ content, and (b) volume per mole of oxygen vs. Al₂O₃ content in the Na₂O-Al₂O₃-P₂O₅ glass with 32.5 mol% P₂O₅.

strength of the titanium ion contribution to the strengthening of the glass structure.

The contractions in the volume of the MgO–TiO₂– P_2O_5 glasses with an increase in the TiO₂ content (Fig. 6 (b)) are less than those of the glasses in the Li₂O- and CaO-systems (Figs. 5 (b) and 7 (b)). It can be said that the role of the titanium ion in the glass structure is similar to that of the Mg²⁺ ion and also that the titanium ion replaces the Mg²⁺ ion.

As shown in Fig. 8 (a), no increase was found in the density on an increase in the Al_2O_3 content for the $Na_2O-Al_2O_3-P_2O_5$ glass with 32.5 mol% P_2O_5 . This suggests that the role of the titanium ion in the glass structure is different from that of the Al^{3+} ion in compositions with less than 50 mol% P_2O_5 .

The author wishes to thank Associate Professor Makio Kinoshita of Sophia University for his interest and encouragement, and also Mr. Yuichi Yokoyama for his assistance in the experimental work.

References

- 1) T. Hayashi, K. Honda, and H. Saito, Yogyo Kyokai Shi, **84**, 403 (1976).
- 2) A. Kishioka, M. Haba, and M. Amagasa, Bull. Chem. Soc. Jpn., 47, 2493 (1974).
- 3) A. Kishioka, M. Hayashi, and M. Kinoshita, Bull. Chem. Soc. Jpn., 49, 3032 (1976).
 - 4) A. Kishioka, Bull. Chem. Soc., Jpn., 50, 2088 (1977).
 - 5) Bh. V. J. Rao, Phys. Chem. Glasses, 4, 22 (1963).